
International Journal of Research in Engineering and Science (IJRES)

ISSN (Online): 2320-9364, ISSN (Print): 2320-9356

www.ijres.org Volume 6 Issue 8 Ver. I ǁ 2018 ǁ PP. 39-48

www.ijres.org 39 | Page

Forensic analysis of Telegram Messenger Desktop on MacOS

J. Gregorio1, B. Alarcos2, A. Gardel3

*1
Instituto Universitario de Ciencias Policiales, University of Alcala, Alcala de Henares, Madrid, España

2
 Instituto Universitario de Ciencias Policiales, University of Alcala, Alcala de Henares, Madrid, España

3
 Instituto Universitario de Ciencias Policiales, University of Alcala, Alcala de Henares, Madrid, España

Corresponding Author: J. Gregorio

Abstract

This paper proposes a forensic analysis methodology to better evaluate the information
that IM applications generate using a desktop version. The methodology has been applied to
a particular IM Desktop application “Telegram Messenger” for MacOS retrieving
information valuable in a forensic digital analysis. Our evaluation presents the results
obtained from a combined analysis using different techniques proposed as a forensic
methodology. Additionally, a specific forensic procedure is shown for IM applications
installed as desktop suites concerning the cloud remote communication services. The
forensic analysis is focused on relevant data extracted from the IM application and
related to the user communications that might be interesting in a forensic analysis
pursuing the acquisition of digital evidences concerning the commission of criminal acts.

Keywords:Forensic analysis methodology, Instant Messaging applications, Telegram
Messenger, Desktop suites, MacOS.

--- ----------

Date of Submission: 07-09-2018 Date of acceptance: 24-09-2018

I. INTRODUCTION

The popularity of the Instant Messaging (IM) applications has led to their massive use as a

communication system to share multiple data among people (text, images, files, location, etc.) using

private/public or individual/group chats. In turn, this new mean of communication provides the criminals with

another instrument to commit criminal acts such as cyberbullying, grooming, share pedophile content, insults,

threats, coercion, terrorist propaganda, etc.

In the different platforms for smartphone distribution of application such as Apple Store, Google Play, or

Windows Store, a large number of IM applications can be founded for example Line, Signal, Tango, Telegram,

WickrMe, ooVoo, Viber, Threema, WhatsApp, etc. to name a few [1,2] available for the different mobile OS

(iOS, Android, BlackBerry OS, Windows Phone, etc.) [3], [4], [5]. Currently, many of these IM applications

gives the user with different possibilities to access the information from smartphones (mobile-client), computer

(desktop-client) or web browser (web-client) as the information is usually stored in the cloud.

Additionally, these IM applications might store the information about the application and user data encrypted in

the database of the end-user device or even not store any information locally but in the cloud. Some of these IM

applications encrypt both the data and communications of the user [6], [7]. Regarding the location of the user

data, many of these applications store the information in their own servers rather than using the user device.

This paper presents a methodology for the forensic analysis so the technician can have a detailed view, both

functional and forensic views, of the IM applications in order to do a complete in-depth analysis of them.

Following the steps shown in the paper the forensic analyst can do a detailed study to know the real information

that IM applications gather such as user data or application data, answering relevant questions that arise when

Forensics analysis of Telegram Messenger Desktop on MacOS

www.ijres.org 41 | Page

doing the analysis: where are the user data?, why do we not find any messages?, where are the multimedia

files?, etc.

In particular, we have focused our paper in the forensic analysis methodology applied to the IM “Telegram

Messenger” installed as a desktop application on a MacOS operating system. This is a clear example of IM

applications that encrypts the information in the local device and stores user data on the cloud. It is worth noting

that at the current time multiple forensic tools such as X-Ways [8], Forensics Explorer [9] or EnCase [10] do not

provide support for the new file system of Apple called “APFS” [11]. Other forensic tools are specialized in the

artifacts processing (e.g. Belkasoft Evidence Center [12] or Internet Evidence Finder [13]), but they do not

support the analysis of the IM desktop application of “Telegram Messenger”.

II. RELATED WORK

Concerning the forensic analysis of IM applications, many of the research papers focus their study on

the artifacts generated locally by the IM application. Nowadays the forensic analyst should enlarge the study not

only processing the static artifacts, because many of the new IM applications make an intensive use of cloud

services, storing the information in remote servers not related with the end-user. This is an important reason to

search for a new kind of analysis methodologies to provide the technician with all the possible information to do

a right and complete forensic analysis.

In the study done by Amine et al. [14], the authors propose a taxonomy for cloud-based applications in

particular for Android mobile applications taking into consideration which kind of information is stored in the

mobile device. Other relevant work is the paper from Aminnezhad et al. [15] that enumerates the difficulties that

a cloud-based forensic analysis faces not only related to technical issues but also with legal matters.

The study from Yusoff et al. [16] analyses the artifacts stored by different IM applications into a

mobile device. Its analysis is focused in the artifacts that are generated after accessing the communication

system from a web browser. In this case, they provide relevant information about the registers used by the IM

“Telegram Messenger” application on a mobile device and web frontend. Similarly, the paper published by

Sgaras et al. [17], focuses its analysis in the artifacts study generated from the “Tango” application used on a

mobile device, comparing the results obtained with other IM applications. The latter two papers only process the

information from a static analysis point of view on two different IM applications. In none of them there are

references explaining the analysis methodology that might be used to allow the verification of the obtained

information, only present several tests and results on the digital evidences. It is impossible to know how the

software will act for other different data. If there is open-source code available, the forensic analysis could take

advantage to know better the behavior of the IM application under analysis.

In relation to the collection of data located in the cloud, there are several articles Brunty et al. [18],

Huber et al. [19] and Taylor et al. [20] in which their authors carry out a study of different social media

networks (e.g. Facebook, etc.) and methods of collecting public information from users using web crawling

techniques. Similarly, other articles Ameer et al. [21] and Keyun et al. [22] describe the organization of the data

in cloud environments, although no detailed analysis is carried out with respect to the forensic data analysis. In

all these papers there are no particular references to the steps that a forensic analyst should do when dealing with

IM applications installed on a desktop computer.

Therefore, it is required to have a methodology of forensic analysis based on the combination of

different sources of information, that may be used as a way of validate the integrity of the recovered information

and provide the technician with added knowledge about the behavior of the application and different artifacts

generated. Our proposal is not only focused in processing the data artifacts but provides a complete analysis

with a different set of tools such as open knowledgeanalysis, analysis of artifacts (static / dynamic) and analysis

of different relevant fragments of source code when available.

III. METHODOLOGY FOR FORENSIC ANALYSIS

The methodology is a combination of 3 different techniques which provide a more complete

information and knowledge about how the IM application gathers and process data.

1. Open knowledge: This type of technique relies on any information or documentation available about

the IM application such as technical studies, books, related blogs, developer docs, etc. In many cases,

the webpage from the developer/manufacturer provides some relevant information [23].

2. Analysis of artifacts: This technique studies the different evidences generated and stored in a digital

device. The analysis of these digital traces can be done following different alternatives:

Forensics analysis of Telegram Messenger Desktop on MacOS

www.ijres.org 41 | Page

a. Static analysis:The static forensic analysis of artifacts is equivalent to the traditional analysis

method, retrieving all the information and traces that the application has stored in a digital

evidence such as user’s data, registers log, app records, event log, etc. This kind of analysis is

based on a forensic image cloned from the digital evidence processed with specific forensic

tools to retrieve the valuable information [24], [25].

b. Dynamic analysis: The dynamic forensic analysis is based on the information generated once

the digital evidence is executed. In this way, a live analysis of information could be done. This

dynamic analysis is called triage. There are 3 different scenarios to do the triage:

i. Execution of the forensic cloned image:In this scenario, the technician makes use of

all the required files and data from the collected digital evidence such as user data

files, configuration files, application files, etc. required to execute the IM application.

These data and files are obtained from the previous static artifacts analysis. Thus, the

IM application is executed on a forensic environment under control, faking the IM

application as it were the real end-user executing the original IM application.

ii. Emulated with virtual machines:In this case, not only the data for the IM application

is used but the whole operating system executing it on a virtual machine from the

cloned version. Therefore, the original system can be emulated being able to display

the live information. There are different forensic tools, commercial and free ones,

that are ready to be used by a forensic analyst to virtualize the cloned image such as

the ones given in [26] and [27].

iii. Cloned in original machine:One last option could be the use of the cloned forensic

image into the same computer physical device. Sometimes, due to some hardware

encryption techniques or complex datafile systems, the original device with a replica

of the data must be executed, otherwise the OS refuse to run. Making use of this last

resource, the analyst can obtain the results of how it would be the execution of the

IM application in the original device, being able to do a live forensic analysis.

3. Source code: In this type of analysis, the forensic technician takes advantage of the source code

knowledge. The source code (sometimes fragments of source code) might be provided to the

community by the developer based on the different licenses used in it and ultimately by means of

inverse engineering [28], [29].

There is a benefit while reviewing the digital evidence for a particular IM application using these techniques as

they provide more information about the acquired data, some way of validation and verifying the correctness of

the results from different points of view. Current IM applications might have data stored in the cloud, pending

requests, etc. so it requires that a dynamic analysis be done.

In next section, we present how to obtain the information and data generated by the IM desktop application of

“Telegram Messenger” on a MacOS system, mixing all the three mentioned analysis techniques.

IV. METHODOLOGY FOR FORENSIC ANALYSIS

The following subsections describes the forensic analysis of “Telegram Messenger Desktop” for

MacOS done using the techniques in the proposed methodology.

4.1 OPEN KNOWLEDGE ANALYSIS

The open knowledge analysis tries to gather all the relevant information about the IM application, in

our case “Telegram Messenger Desktop”, using in most of times different open source code information. The

search for information should be focused on identifying any piece of documentation that may describe the

operation of the application as it is given by the data structure, files, etc. In this particular case, we will focus our

work on MacOS.

Forensics analysis of Telegram Messenger Desktop on MacOS

www.ijres.org 41 | Page

The official website for the IM Telegram [30] gives anyone a large quantity of information, how data is

stored, a schema for data structure, API library, source code, etc. However, there is no detailed information

about the management of user data when using Telegram for MacOS.

In the other hand, other websites have relevant information. In the “Unofficial Telegram Wiki” [31], it has been

found small pieces of information related with the folder structure that the application generates on MacOS.

Another source of information founded was a technical document [32], where an in-depth study about the

different artifacts that the Telegram generates in Windows 10.

4.2 ARTIFACTS ANALYSIS.

This section deals with the artifact analysis specific for desktop applications such as encryption data

(due to the more powerful capabilities of the desktop computers respect the mobile devices) and data location

for user and application information. In these cases, a static forensic analysis provides the technician with few

relevant information about the user data being necessary to combine the analysis with a dynamic triage to

retrieve user data and information.

4.2.1 Analysis of artifacts. Static analysis.

In the next subsections, we show the results given by the static forensic analysis done processing the

artifacts from the desktop application IM “Telegram Messenger” on a “MacOS High Sierra”. Due to the features

of the new APFS file system, two different forensic suites have been chosen in order to do the static analysis.

We have used as analysis tools the native forensic software from the MacOS environment, since, at the time of

this study, current forensic tools do not provide the same support for the new “APFS” file system.

4.2.1.1 Static forensic analysis of artifacts using native software from MacOS.

In this case, the static forensic analysis is done via the use of different native tools that are already

installed on MacOS (Finder.app, Terminal.app, DiskImageMounter.app, etc.). The forensic image cloned in a

RAW format (file extension “.dmg”), is mounted/added in the forensic computer device as an external device

being able to access its contents.

Table 1 enumerates the different artifacts obtained after the application of a static forensic analysis of the IM

Telegram such as application, log data, user data, temporal configuration files, multimedia files and socket

connection.

Table 1: “Telegram Messenger Desktop” artifacts on “MacOS High Sierra”.

Row# Content File Name (with extension) Folder Description

1 Application Telegram.app /Applications/ Application data.

2 Log data Log.txt /Users/${user}/Library/Application

Support/Telegram Desktop/

Events record.

3 User data Various files. /Users/${user}/Library/Application

Support/Telegram Desktop/tdata

Encrypted data.

4 Temporal

configuration files

data.data, windows.plist,

window_1.data
/Users/${user}/Library/Saved Application

State/com.tdesktop.Telegram.savedState

Temporal configuration

files.

5 Multimedia files Various files. /Users/${user}/Downloads (Default) Multimedia download

files.

6 Socket connection 7852aa807d0e61276974ee8783

96a1c4-{87A94AB0-E370-

4cde-98D3-ACC110C5967D}...

/tmp/

Local socket. Regular file

Fig. 1 shows an example content of the “tdata” folder, where user data are stored. The “tdata” folder contains

multiple relevant information such as for example the data contained in the files “usertag”, “settings1” and

“D877F783D5D3EF8C1”. Additionally, a subfolder of “tdata” with a similar name than the last recalled

Forensics analysis of Telegram Messenger Desktop on MacOS

www.ijres.org 41 | Page

filename except for the last digit, contains other relevant files with an alphanumeric random name composed of

17 characters, and also a file “map1”. From the source code analysis, we know the data structure of these files

but the information is encrypted.

Fig. 1. Content sample for the “Telegram Desktop” folder tdata and subdirectories.

These alphanumeric files (right text column of Fig. 1), stored under the subfolder “D877F783D5D3EF8C”, have

a correspondence with the messages of the different chats that are created when the user of the application

“reads” the first message of a chat.

Analyzing the content of these files, one can observe that they have the same header with a hex data value equal

to “0x54444624” (“TDF$” in ASCII). The rest of the content is encrypted. Figure Fig. 2 shows an example of

the content of the header extracted from one of these user data files.

Fig. 2. File header of “settings1”.

An in-depth explanation about the meaning of the data contained in all these files is out of the scope of

our paper. In fact, the data information obtained after the forensic static analysis of those files for the desktop

application does not provide any relevant data about the user and his/her messages.

As we will show later, from the source code knowledge of the application the analyst can extract the required

information to validate and understand the data obtained from the analysis. For example, the content of the user

datafiles is encrypted data using a private password (shown from the source code file localstorage.cpp;) and the

name of the folder corresponds with the MD5 hash restricted to 16 first characters (shown from the source code

file utils.cpp).

4.2.2 Analysis of artifacts. Dynamic analysis.

This section describes three different techniques using a “triage” or live analysis of the data generated

when the application is executed. The analyst have to execute the IM “Telegram Messenger” application in

Forensics analysis of Telegram Messenger Desktop on MacOS

www.ijres.org 41 | Page

order to connect to the servers and retrieve as much relevant data as possible. Section 5.2 presents real examples

of this triage.

4.2.2.1 Forensic copy of relevant data.

In this case, the analyst must copy the application and user data obtained in the before static forensic

analysis and make the most of them inside a controlled forensic MacOS environment.

For the IM Telegram it is required to use the configuration and data stored by application in

“/Applications/Telegram.app” and the user data stored in the folder “/Users/${user}/Library/Application

Support/Telegram Desktop/tdata/”. These original files must be copied into the controlled forensic environment,

emulating the installation and configuration of the application as it were done by the real user. There is no need

to obtain the forensic image of the digital evidence.

4.2.2.2 Emulated with virtual machines.

In this type of dynamic analysis of artifacts, the original MacOS forensic image is virtualized. In this

way, the analyst can do a live analysis or “triage” of the virtual machine as it were the original computer device.

Nowadays the virtualization of an OS image obtained from the forensic cloned copy is a quick option to setup

and test because there are many forensics tools such as (Forensics Explorer, OpenVL, Perlustro, etc.) that

already provides the capability to emulate the system with the help of standard virtualization software (vmWare,

VirtualBox, Parallels, etc.).

It should be noted that the analyst might find certain incompatibilities with the generic hardware that uses the

virtualization software or other specific problems to access the system due to passwords to access or to decrypt

information, even the existence of a requirement of the original computer to run the system. In these cases, it

could be of help for the forensic analysis to mount the cloned copy into the original computer device. This is the

third technique described in the next subsection.

4.2.2.3 Cloned image executed in the original machine.

This last scenario makes use of the cloned image but installed into the original computer equipment- In

this particular case, the forensic technician uses the original computer device as a work tool plus the image copy

of the digital evidence to avoid any hardware issues while preserving the original data and original device. With

this technique, the analyst solves any problem with some specific hardware required to access the data or any

other condition that makes useless to emulate the OS in another computer device.

In section 5, we present a practical example about how to obtain the user data for the IM “Telegram Messenger”

desktop application on MacOS mixing the static analysis and dynamic analysis of all the artifacts stored in the

cloned forensic image, plus the particular features that this information retrieval involves.

4.3 SOURCE CODE ANALYSIS.

Finally, the technician might require the information obtained from the analysis of the source code of

the IM application, focusing specifically in those, which can provide relevant information for the analysis. The

developer website gives some details and several source code files for different OS installations. The source

code for the “Telegram Messenger” desktop application on MacOS is coded in the “C/C++” programming

language. The analysis of some fragments or lines extracted from the source code should be focused mainly in

those files that might contain some definitions or functions that gives some clue or information about the how

the application manages the user data files.

In particular, we have parsed the source code file with name “localstorage.cpp” that can be accessed in the

folder “tdesktop-dev\tdesktop-dev\Telegram\SourceFiles\storage\” once the source code is downloaded, which

contains different functions, for example those functions that controls the reading and writing operations of user

data files.

Fig. 3 shows a fragment of the source code given in the “localstorage.cpp” file in which the variable “tdfMagic”

it can be shown together with its corresponding value “TDF$” (hexadecimal header “0x54444624”). This value

has been previously identified in the header of the different data files located in the “tdata” folder of the IM

application.

Forensics analysis of Telegram Messenger Desktop on MacOS

www.ijres.org 41 | Page

Fig. 3. Variable “tdfMagic”. Source code file: “localstorage.cpp”

Additionally, Fig. 4 shows a fragment of the source code given in the “localstorage.cpp” file with the following

relevant functions: “writeData”, “writeEncrypted” and “prepareEncrypted”. These functions are responsible of

writing the information encrypted in the data files of the application.

Fig. 4. Source code of functions related with the encrypted writing of data.

Source code file: “localstorage.cpp”

Forensics analysis of Telegram Messenger Desktop on MacOS

www.ijres.org 41 | Page

Finally, Fig. 5 shows a fragment of the same source code file “localstorage.cpp” in which the source code of the

function “createLocalKey” can be analyzed. Doing this analysis, we have concluded that this source code

manages the creation of local passwords (variable localKey) that later will be used in the encryption of the data

files, using a key derivation function [33].

Fig. 5. Management functions to manage the creation of local passwords/keys.

Source code file “localstorage.cpp”.

Therefore, it is clear to see that the analysis of the source code of the “Telegram Messenger Desktop” for

MacOS, provides the forensic technician with a large quantity of information about the operation and usage of

the application and how this application manages the user data. Despite the fact that it is a good technique to

obtain more information, it does not offer any straight method to obtain the user messages content because these

messages are cyphered/encrypted.

V. STATIC AND DYNAMIC ARTIFACTS ANALYSIS. COPY FORENSIC

This section shows how to apply the described techniques in the previous sections. The dynamic

analysis has led to the acquisition of user data stored in the cloud. The static analysis has obtained the user and

application information and knowing this information we have been able to obtain the user messages using the

IM desktop application inside a controlled forensic environment.

5.1 STATIC ARTIFACTS ANALYSIS. OBTAINING DATA FROM FORENSICS IMAGE.

This step of the forensic analysis process the static artifacts from a forensic image to obtain the

required information to do a forensic clone of the relevant data located in the folder

“/Applications/Telegram.app”, and also clone the user data stored in the folder

“/Users/{USER}/Library/Application Support/Telegram Desktop/”.

In this particular case, the static analysis of artifacts has been done from the data generated on an IM “Telegram

Messenger” desktop application (v1.1.23) running a “MacOS High Sierra” (v12.13) on a “MacBook Pro”

hardware. We have followed the next steps:

 Clone the forensic image. We have used a liveCD with the “Zero Live” DEFT Toolkit [34],

taking into consideration that the “FileVault” encryption system should not be active.

 Process the artifacts stored in the forensic image. In our particular case, because this new

MacOS has the “APFS” new filesystem we have used as forensic tools the standard tools to

read and search for data currently available in this new MacOS environment. Thus, the

forensic image has been read using the native tools DiskImageMounter.app and Finder.app.

 Copy the relevant datafiles for later use in the dynamic analysis.

Forensics analysis of Telegram Messenger Desktop on MacOS

www.ijres.org 41 | Page

Figures Fig. 6 and Fig. 7 show the execution of the native tool DiskImageMounter.app, so it is possible to mount

and read the data and files contained in the forensic image “image_27_09_2017.dmg” inside a forensic

environment based on MacOS. The forensic image is mounted as “Untitled”.

Fig. 6. Forensic image:

“Image_27_09_2017.dmg” stored in the

hard disk “Untitled 1”.

Fig. 7. External device “Untitled” mounted

from the forensic image named

“Image_27_09_2017.dmg”.

Once mounted, the content of this new external drive “Untitled” (“image_27_09_2017.dmg”) can be analyzed

by different tools, for example the native tools of MacOS “Finder.app” or “Terminal.app”.

5.2 DYNAMIC ARTIFACTS ANALYSIS. OBTAINING USER DATA FROM STATIC
ARTIFACTS ANALYSIS

This section shows the procedure to obtain cloud information of a Telegram desktop user. Legal

aspects regarding the location of data and other legal issues are out of the scope of our paper. The procedure

starts from the data copied in the static artifacts analysis done in the section before.

The application data contained in “Untitled/Applications/Telegram.app” (“image_27_09_2017.dmg”), is copied

into our monitored forensic environment, creating the application “/Applications/Telegram.app” (forensic copy)

together with the user data in the following application folder “Untitled/Users/{USER}/Library/Application

Support/Telegram Desktop/” (“image_27_09_2017.dmg”), creating the folder

“/Users/{FORENSIC_USER}/Library/Application Support/Telegram Desktop/” (forensic copy).

Fig. 8 shows a list of applications stored in the system folder “/Applications/” in our monitored forensic

environment where it is shown the cloned application “Telegram.app” (data from the forensic image).

Fig.8. “Telegram.app” (forensic copy).

Forensics analysis of Telegram Messenger Desktop on MacOS

www.ijres.org 41 | Page

With the user data stored in the folder “Telegram Desktop”, now it is possible to execute the forensic copy

application “/Applications/Telegram.app”, which will show the graphical user interface so the analyst has access

to the chat information and messages of the user.

Once enabled internet connection to the forensic environment the forensic copy application

“/Applications/Telegram.app” retrieves the user messages from the cloud to be displayed in the local computer.

Fig. 9 shows the user messages (the contents are intentionally blanked). The analyst obtains not only the user

data but any message sent until this execution instant.

Fig.9. Cloud data from the cloned IM application in the forensic environment

“/Applications/Telegram.app” (forensic copy).

VI. CONCLUSION

After carrying out the different types of analysis presented in the paper, as current IM applications for

their desktop versions include encryption systems the forensic analysis is many times impractical. Additionally,

several IM applications do not store user's data locally but in the cloud. The proposed methodology for the IM

forensic analysis provides a combination of different techniques thus validating the integrity of the data

obtained. It also provides the specialist with a general and forensic knowledge on how and what data can be

obtained from a particular IM application.

We have reached to the conclusion that for the forensic analysis of the desktop versions of IM applications, the

specialist must carry out a preliminary study of the application through the open knowledge and source code to

obtain information regarding its operation. Afterwards, a static and dynamic analysis of artifacts must be

performed, validating the information obtained from the different data sources.

Although, as the paper have presented, certain characteristics of IM desktop applications require to access the

cloud data to obtain the information related to the user. Therefore, the specialist needs to keep in mind both the

chain of custody of the digital evidence and the information, preserving at any time that the data is obtained with

the appropriate guarantees, documenting the operations carried out and maintaining the inalterability of the

information.

VII. REFERENCES

[1]. “Number of mobile phone messaging app users worldwide from 2016 to 2021 (in billions)”. Available at,

https://www.statista.com/statistics/483255/number-of-mobile-messaging-users-worldwide/.
[2]. “Most popular mobile messaging apps worldwide as of January 2017” Available at,

https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/.

[3]. “Communication App in Google Play”. Available at,
https://play.google.com/store/apps/category/COMMUNICATION/collection/topselling_free.

[4]. “Social App in Apple Store”. Available at, https://itunes.apple.com/us/genre/mac-social-networking/id12016?mt=12.

Forensics analysis of Telegram Messenger Desktop on MacOS

www.ijres.org 41 | Page

[5]. “Social App in Windows Store”. Available at, https://www.microsoft.com/en-us/store/top-free/apps/mobile?target=apps..social.

[6]. Warren G. Kruse II , Jay G. Heiser . “Computer Forensics: Incident Response Essentials ”. Pearson Education, 26 September. 2001,

Pages 416 .
[7]. NedaaB.. Al Barghuthi 1 and Huwida Said. “Social Networks IM Forensics: Encryption Analysis”. Journal of Communications

Vol.8, No. 11, November 2013.

[8]. X-Ways Software Technology AG. X-Ways Forensics: Integrated Computer Forensics Software. Available at, http://x-

ways.net/forensics/index-m.html; 2017.
[9]. OpenText. Encase Forensics. Available at, https://www.guidancesoftware.com/encase-forensic?cmpid=nav_r; 2017.

[10]. GetData Software Company. Forensic Explorer. Available at, http://www.forensicexplorer.com/; 2017.

[11]. Apple File System Guide. Available at,
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/APFS_Guide/Features/Features.html;

2017.

[12]. Oxygen Forensics, Inc. Oxygen Forensics. Available at, http://www.ogygen-forensics.com/en/; 2017.
[13]. Magnet Forensics, Inc. Mobile Forensics. Available at, https://www.magnetforensics.com/mobile-forensics/; 2017.

[14]. M. Amine Chelihi, A. Elutilo, I. Ahmed, C. Papadopoulos, A. Dehghantanha, “An Android Cloud Storage Apps Forensic

Taxonomy”, Pages 285-305, Chapter 15, (Elsevier) Contemporary Digital Forensic Investigations Of Cloud And Mobile
Applications, 2017.

[15]. Aminnezhad, Asou&Dehghantanha, Ali & Abdullah, MohdTaufik&Damshenas, Mohsen. (2013). “Cloud Forensics Issues and

Opportunities. International Journal of Information Processing and Management”. 4. 76-85. 10.4156/ijipm.vol4.issue4.9.

[16]. M. N. Yusoff, A. Dehghantanha, R. Mahmod. “Forensic Investigation of Social Media and Instant Messaging Services in Firefox

OS: Facebook, Twitter, Google++, Telegram, OpenWapp and Line as Case Studies”. Contemporary Digital Forensic Investigations

of Cloud and Mobile Applications, Chapter: 4, Publisher: Elsevier, Pages.41-62.
[17]. Sgaras, Christos&Kechadi, Tahar& Le-Khac, Nhien-An. “Forensics Acquisition and Analysis of Instant Messaging and VoIP

Applications”. Conference: 6th IAPR International Workshop on Computational Forensics (IWCF 2014), At Stockhom, Sweeden,

Volume: LNCS 8915. 10.1007/978-3-319-20125-2_16.
[18]. Brunty, J., Miller, L., Helenek, K., 2014. “Social media investigation for law enforcement”. Routledge.

[19]. Huber, M., Mulazzani, M., Leithner, M., Schrittwieser, S., Wondracek, G., Weippl, E., “Social snapshots: Digital forensics for

online social networks”. In: Proceedings of the 27th annual computer security applications conference. ACM, 2011, Pages 113–122.
[20]. Taylor, M., Haggerty, J., Gresty, D., Almond, P., Berry, T., “Forensic investigation of social networking applications”. Network

Security 2014 (11), Pages 9–16.

[21]. Ameer Pichan, Mihai Lazarescu, SieTengSoh, Cloud forensics: Technical challenges, solutions and comparative analysis, Digital
Investigation, Volume 13, 2015, Pages 38-57.

[22]. KeyunRuan. “Cybercrime and Cloud Forensics: Applications for Investigation Processes”. University College Dublin, Ireland,

December 2012, Pages 348, ISBN13: 9781466626621.
[23]. Telegram Messenger developer web page. Available at, https://core.telegram.org/mtproto.

[24]. ISO/IEC 27037:2015. “Information technology -- Security techniques -- Guidelines for identification, collection, acquisition, and

preservation of digital evidence”, 15 November 2012.
[25]. ENFSI. “ENFSI-BPM-FIT-01. Best Practice Manual for the Forensic Examination of Digital Technology”. Available at,

“http://www.enfsi.eu/sites/default/files/documents/enfsi-bpm-fit-01_1.pdf”. Version 1 – November 2015.

[26]. Brett Shavers. “Virtual Forensics. A Discussion of Virtual Machines Related to Forensics Analysis”. Available at,
http://www.forensicfocus.com/downloads/virtual-machines-forensics-analysis.pdf.

[27]. NanniBassetti. “Imm2Virtual: A Windows GUI To Virtualize Directly From Disk Image File”. Available at,

https://articles.forensicfocus.com/2017/10/06/imm2virtual-a-windows-gui-to-virtualize-directly-from-disk-image-file/.
[28]. Source code Telegram Desktop. Available at, https://github.com/telegramdesktop/tdesktop.

[29]. Source code Telegram for MacOS. Available at, https://github.com/overtake/TelegramSwift.

[30]. Telegram Messenger. Available at, https://telegram.org.
[31]. Unofficial Telegram Wiki. Available at, https://telegram.wiki/#telegram_desktop.

[32]. Christian Oertle. “Anwendungsanalyse des Messengers Telegram Desktop (Version 0.9.15) unter Windows 10”. Available at

http://docplayer.org/28398743-Anwendungsanalyse-des-messengers-telegram-desktop-version-unter-windows-10.html. 2016.
[33]. “PKCS5_PBKDF2_HMAC_SHA1”. Available at, http://openssl.cs.utah.edu/docs/crypto/PKCS5_PBKDF2_HMAC.html.

[34]. “DEFT Zero”. Available at, http://www.deftlinux.net/2017/02/13/deft-zero-2017-1-ready-for-download/.

http://x-ways.net/forensics/index-m.html
http://x-ways.net/forensics/index-m.html
https://www.guidancesoftware.com/encase-forensic?cmpid=nav_r
http://www.forensicexplorer.com/
https://developer.apple.com/library/content/documentation/FileManagement/Conceptual/APFS_Guide/Features/Features.html
https://www.magnetforensics.com/mobile-forensics/
https://www.igi-global.com/affiliate/keyun-ruan/236355/
http://www.enfsi.eu/sites/default/files/documents/enfsi-bpm-fit-01_1.pdf
https://github.com/telegramdesktop/tdesktop
https://telegram.org/
https://telegram.wiki/#telegram_desktop

